metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Clemens Krempner,* Katja Weichert and Helmut Reinke

Institut für Chemie, Universität Rostock, Albert-Einstein-Strasse 3a, D-18059 Rostock, Germany

Correspondence e-mail: clemens.krempner@uni-rostock.de

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (C–C) = 0.004 Å R factor = 0.036 wR factor = 0.098 Data-to-parameter ratio = 17.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

5,5-Dimethyl-2,2-bis(pentafluorophenyl)-4,4,6,6-tetrakis(trimethylsilyl)-1,3-dioxa-4,5,6-trisila-2-titanacyclohexane

The title compound, $[Ti(C_6F_5)_2(C_{14}H_{42}O_2Si_7)]$, was readily synthesized from $B(C_6F_5)_3$ and $SiMe_2[(Me_3Si)_2SiO]_2TiMe_2$ in *n*-pentane. The compound contains one titanium metal centre with a distorted tetrahedral geometry.

Received 7 December 2006 Accepted 15 December 2006

Comment

We have investigated the reactivity of compound (1) (see scheme) towards the Lewis acid $B(C_6F_5)_3$ that is known to abstract alkyl groups from the metal centre to form cationic metal species active in olefin polymerization. Complex (1) reacted cleanly with $B(C_6F_5)_3$ (molar ratio 1:1) within minutes, resulting in the formation of $Me_2Si[(Me_3Si)_2SiO]_2Ti(C_6F_5)_2$, (2), the quantitative product of C_6F_5 group transfer. The fact that both methyl groups have been replaced smoothly by C_6F_5 groups indicates the high electrophilicity of the titanium centre caused by the electron-withdrawing ligand environment.

The structure of (2) contains a titanium centre with a distorted tetrahedral coordination geometry (Fig. 1 and Table 1). The titanium is coordinated in a chelate fashion $[O1-Ti1-O2\ 106.33\ (7)^\circ]$ by the siloxide ligand, giving a nearly planar six-membered ring. The Ti-O distances $[1.7503\ (15)$, 1.7408 (15) Å] in the ring are similar to those found in closely related cyclic siloxide complexes (Krempner *et al.*, 2006).

Experimental

All manipulations were carried out under an atmosphere of argon using standard Schlenk and glove-box techniques. Benzene- d_6 was dried over activated molecular sieves and stored in the glove box and *n*-pentane was distilled under argon from alkali metals prior to use. B(C₆F₅)₃ (Chernega *et al.*, 1997) and (1) (Krempner *et al.*, 2006) were prepared as previously described. NMR: Bruker AC 250. A Schlenk flask was charged with (1) (0.28 g, 0.54 mmol) and B(C₆F₅)₃ (0.27 g, 0.52 mmol) and dissolved in *n*-pentane (10 ml) at *ca* 253K. The stirred yellow solution was allowed to warm to room temperature within 30 min, after which time the solution was concentrated. Crystallization at 233K afforded SiMe₂[(Me₃Si)₂SiO]₂Ti(C₆F₅)₂ (2) as orange crystals [yield 0.18 g (41%); m.p. 395–396K]. ¹H-NMR (C₆D₆, 250 MHz): *d* = 0.41 (*s*, Si(CH₃)₂, 6 H), 0.21 (*s*, Si(CH₃)₃, 36 H) p.p.m.. ¹³C-NMR (C₆D₆, 75.5 MHz): *d* = -0.7 (Si(CH₃)₃), -1.1 (Si(CH₃)₂),

© 2007 International Union of Crystallography All rights reserved 134,4–149,6 (C₆F₅) p.p.m. ²⁹Si-NMR (C₆D₆, 59.6 MHz): d = 34.4 (SiO), -11.7 (Si(CH₃)₃), -28.5 (Si(CH₃)₂) p.p.m. ¹⁹F (235.4 MHz): d = 158.8, -146.8, -116.6 (*m*-, *p*-, *o*-F, Ti(C₆F₅)₂) p.p.m. Analysis calculated for C₂₆H₄₂F₁₀O₂Si₇Ti (821.07): C, 38.03; H 5.16%. Found: C, 34.79; H 5.04%.

Z = 4

 $D_r = 1.306 \text{ Mg m}^{-3}$

 $0.60 \times 0.48 \times 0.45 \text{ mm}$

7359 independent reflections

 $w = 1/[\sigma^2(F_o^2) + (0.0379P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

+ 3.8726P]

 $\Delta \rho_{\rm max} = 0.59 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.55 \text{ e } \text{\AA}^{-3}$

 $(\Delta/\sigma)_{\rm max} = 0.001$

6528 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 0.47 \text{ mm}^{-1}$

T = 173 (2) K

Prism, orange

 $R_{\rm int} = 0.027$

 $\theta_{\rm max} = 25.0^{\circ}$

Crystal data

 $\begin{bmatrix} \text{Ti}(C_6\text{F}_5)_2(\text{C}_{14}\text{H}_{42}\text{O}_2\text{Si}_7) \end{bmatrix} \\ M_r = 821.13 \\ \text{Monoclinic, } P_{2_1}/c \\ a = 11.3299 (2) \\ \text{Å} \\ b = 19.1104 (3) \\ \text{Å} \\ c = 19.7235 (4) \\ \text{Å} \\ \beta = 102.039 (1)^{\circ} \\ V = 4176.58 (13) \\ \text{Å}^3 \end{bmatrix}$

Data collection

Bruker X8-APEX CCD diffractometer φ and ω scans Absorption correction: none 45244 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.099$ S = 1.087359 reflections 429 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

Ti1-O2	1.7408 (15)	Si2-O1	1.7127 (15)
Ti1-O1	1.7503 (15)	Si2-Si3	2.3869 (9)
Ti1-C15	2.135 (2)	Si3-Si4	2.3753 (9)
Ti1-C21	2.136 (2)	Si4-O2	1.7125 (15)
Si1-Si2	2.3540 (8)		. ,
O2-Ti1-O1	106.33 (7)	O1-Ti1-C15	111.75 (8)
O2-Ti1-C15	109.77 (8)	O1-Ti1-C21	111.43 (9)
O2-Ti1-C21	108.35 (8)	C15-Ti1-C21	109.12 (9)
O1-Si2-Si3-Si4	-9.90 (7)	Si2-Si3-Si4-O2	6.83 (7)

All H atoms were initially located in a difference Fourier map. They were then constrained to an ideal geometry with a C-H

Figure 1

Fig. 1. The molecular structure of (2), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are omitted for clarity.

distance of 0.98 Å and $U_{\rm iso}$ (H) = 1.5 $U_{\rm eq}$ (C), but each group was allowed to rotate freely about its C–Si bond.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

References

Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Chernega, A. N., Graham, A. J., Green, M. L. H., Haggitt, J., Lloyd, J., Mehnert, C. P., Metzler, N. & Souter, J. (1997). J. Chem. Soc. Dalton Trans. pp. 2293–2304.
- Krempner, C., Köckerling, M., Reinke, H. & Weichert, K. (2006). *Inorg. Chem.* **45**, 3203–3211.
- Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.